Q.P. Code: 18CE0152

Time: 3 hours

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations Feb-2021 **FLUID MECHANICS & FLUID MACHINES**

(Mechanical Engineering)

Max. Marks: 60

R18

		PART-A	
		(Answer all the Questions $5 \times 2 = 10$ Marks)	
1	a	Define viscosity.	2M
	b	What is flow net?	2M
	c	List the minor energy losses in pipes.	2M
	d	Define dimensional homogeneity.	2M
	e	Write short notes on Draft tube.	2M
		<u>PART-B</u>	
		(Answer all Five Units $5 \ge 10 = 50$ Marks)	
		UNIT-I	
2	a	Define surface tension. Derive the relationship between surface tension and pressure	5M
		inside a droplet of liquid in excess of outside pressure.	
	b	The surface tension of water in contact air at 20° C is 0.072 N/m. The pressure	5M
		inside of water droplet of water is to be 0.02 N/cm ² greater than the outside	
		pressure. Calculate the diameter of the droplet of water.	
		OR	
3	a	State Pascal's law. What do you understand the terms Absolute, Gauge,	5M
		atmospheric & vacuum pressure?	
	b	What is the gauge pressure at a point 3 m below the free surface of a liquid having a	5M
		density 1.53 x 10 [°] kg/m [°] , if the atmospheric pressure is equivalent to 750 mm of	
		mercury, the specific gravity of mercury is 13.6 and density of water = 1000 kg/m ³ ?	
		UNIT-II	
4	a	Derive Bernoulli's equation.	5M
	b	Water is flowing through a pipe has diameter 300 mm and 200 mm at the bottom	5M
		and upper end respectively. The intensity of pressure at the bottom end is 24.525	
		N/cm ² and the pressure at the upper end is 9.81 N/cm ² . Determine the difference	
		in datum head if the rate of flow through pipe is 40 lit/s.	
_		OR	
5	a	Derive Euler's equation of motion.	5M
	b	Derive momentum equation and impulse momentum equation.	5M
		UNIT-III	
6	a	The following data relate to an orifice meter, diameter of the pipe = 240mm,	5M
		diameter of the orifice = 120mm, specific gravity of oil = 0.88, reading of	
		differential manometer = 400mm of mercury, coefficient of discharge of the meter	
		is 0.65. Determine the rate of flow of oil.	
	b	An orifice meter with orifice diameter 10 cm is inserted in a pipe of 20 cm diameter.	5M

The pressure gauges fitted upstream, downstream of 19.62N/cm², and 9.81N/cm². Respectively. Co-efficient of discharge for the meter is given as 0.6. Find the discharge of water through pipe.

OR

Derive the expression for flow through pipes in series and parallel. 7

10M

UNIT-IV

6M

4M

- 8 a Write a short note on model laws.
 - **b** State and derive Reynolds's model law.

OR

- **9 a** The time period (t) of a pendulum depends upon the length (l) of the pendulum and **5M** acceleration due to gravity (g). Derive expression for time period.
- **b** The pressure drop in an aero plane model of size 1/10 of its prototype is 180 5M N/cm². The Model is tested in water find the corresponding pressure drop in the prototype. Take density of air =1.24 kg / m³. The viscosity of water is 0.01 poise, while the viscosity of air is 0.00018 Poise.

UNIT-V

10 A Francis turbine with an overall efficiency of 75 % is required to produce 148.25 kW power. It is working under a head of 7.62 m. The peripheral velocity =0.26√2gh and the radial velocity of flow at inlet is 0.96√2gh. The wheel runs at 150 r.p.m. and the hydraulic losses in the turbine are 22% of the available energy. Assuming radial discharge, determine: a) The guide blade angle b) The wheel vane angle at inlet c) diameter of the wheel at inlet d) width of the wheel at inlet.

OR

11 aWrite a note on work done by the centrifugal pump (impeller) on water.5MbDescribe briefly definition of heads and efficiencies of a centrifugal pump.5M

END

Page 2 of 2